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1 Overview

We’ll be introducing the subject of measure preserving dynamical systems which
is a core component of ergodic theory and providing interesting results con-
cerning many of the involved components. This should be understandable by
anyone who has learned some measure theory.

2 Measure Preserving Dynamical Systems

A dynamical system is some space X along with a transformation function

T : X → X.

We think of the action of T on X as representing the passage of time. As often
comes up in application, we impose extra structure on X and T that X is a
measure space and T preserves the measure.

Essentially, we have (X, B, µ) where µ : B → R>0 assigns a notion of
”size” to an element of B which is a family of subsets of X called the σ-algebra
of events of X. We can interpret B as the events one can find the probability of
and µ as a way of assigning relative probability to an event.

I find it helpful to consider X the space of configurations of a physical sys-
tem, instead of as the physical location of a particle. From Hamiltonian Me-
chanics, the position of a particle in phase space completely determines the
dynamics whereas the location alone is often not enough. The same principle
applies here where X represents the phase space (the space whose coordinates
are the positions in a physical system and the momenta of the system).

Often to correspond with the case where µ in fact does represent a proba-
bility of events, we let µ(X) = 1.

To make this a dynamical system, we take the measure space along with the
transformation law T to get (X, B, µ, T) and in the case we often care about,
for all B ∈ B, µ(B) = µ(T(B)). Additionally we assume that T is an invert-
ible transformation. If this is so, we call this a measure preserving dynamical
system, since T takes sets events to events of the same size.
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3 Examples of Measure Preserving Systems

Consider the circle S1 with dµ = 1
2π |dθ|. We often specify the infinitesimal

change in the measure µ with respect to the coordinates of the system for ease
of notation. With dµ specified, we define µ(B) =

∫
B dµ for B in B. One can

then check that µ(S1) = 1. Hence µ is a probability measure.
We can then define a transformation as T(θ) = θ + 2πα mod 2π where

α is a fixed real number in [0, 1]. We then easily see that T preserves µ and
hence (S1, B, µ, T) is a measure preserving dynamical system. This system
corresponds to rotating the circle counterclockwise by 2πα radians.

An example of a system whose measure is not a probability space is the
configuration space determined by a simple harmonic oscillator in one dimen-
sion with unit mass and force constant. The Hamiltonian for this system is
H(q, p) = 1

2 p2 + 1
2 q2. Then the equations of motion for this system are q̇ = p

and ṗ = −q. Let our space be R2 where the first coordinate is our position and
the second coordinate is momentum. Then in fact, we can associate a T for this
system to take a pair (p, q) to a new pair (p ′, q ′) where we get this new pair by
rotating (p, q) by a 1 radian in the clockwise direction. More interestingly, we
can get a measure for this system where dµ = dxdy. This measure is preserved
by Liouville’s Theorem in classical dynamics. This example exemplifies the
idea that measure preserving dynamical systems need not be over a space of
finite measure. However, in the below results we’ll restrict ourselves to spaces
of finite measure.

4 Functions in L1(X)

We say that integrable, real valued functions of X are in L1(X). We interpret
these functions as a physical measurement that an observer can make regard-
ing a point along trajectory (a trajectory is essentially the ”path” a point makes
under evolution corresponding to T).

We wish to signal out a specific type of L1(X) function immediately: the
invariant function. These are function f such that f is constant along trajecto-
ries. I.e. f (T(x)) = f (x). If we view T as representing time evolution, then
invariant functions are measurements that are stationary across time. We note
that we only require this holds for almost every x ∈ X.

5 Pointwise Ergodic Theorem Introduction

We want to show a result regarding averages across a trajectory. We define a
partial average

AN( f )(x) =
1
N

N−1∑
n=0

f (Tn(x)).
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The question is, when does the partial averages approach, in a limiting
sense, an average over the entire trajectory? I.e. when does the below A( f )
converge?

Let
A( f )(x) = lim

N→∞ AN( f )(x)

.
If f is an invariant function, f T = f hence we have AN( f )(x) = f (x) for

almost every x. Then in this case, A( f ) exists at almost every point in X.
Another interesting type of function whose behavior under AN we can

completely analyze is the ”coboundary” f = gT − g where g ∈ L∞(X) where
L∞(X) is the class of bounded functions on X. We can check that f is in L1(X)
by computing its norm.

Let M be a bound on g. Then,

|| f ||1 =

∫
X
| f (x)|dµ 6

∫
X
|gT(x)|dµ +

∫
X
|g(x)|dµ

=

∫
X
|g(x)|dµ +

∫
X
|g(x)|dµ

= 2M
∫

X
dµ

= 2Mµ(X) < ∞
In the above we used the triangle inequality and that T is a measure preserving
transformation which allows us to equate

∫
|gT(x)| with

∫
|g(x)|. This is a form

of change of variables.
Returning to the problem of averaging, AN( f ) becomes a telescoping sum

equal to AN( f )(x) = gTN+1(x)−g(x)
N . Since g is bounded by M, |AN( f )(x)| 6

2M/N which tends to 0 as N approaches ∞. Hence, A( f )(x) = 0.
We were able to provide a sufficient condition for the existence of averages

in the case of invariant functions and the difference of L∞ functions.
Before answering the question of when the average exists in full, we’ll pro-

vide a rough interpretation for the class of ”coboundary” functions. If we view
a L∞ function g as a bounded measurement on a space, we can interpret the
value of f = gT − g as denoting the amount of change in the measurement
over one time interval but since the measurement is bounded, the change is
bounded the average change over n time intervals is the change over n time
intervals divided by n but the numerator is bounded and hence this quantity
approaches zero.

6 Existence of Averages Proof

The broad idea for this proof is to show that the set containing sums of L1

invariant functions and coboundary functions is dense in L1 and that the set
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of functions where this theorem holds is closed thus since the set of functions
where the theorem holds is closed and contains a dense set, the theorem must
hold over all of L1.

Let D = { f + gT − g| f ∈ L1, f invariant, g ∈ L∞}. We’ll show D is dense in
L1.

First we note that ||h||1 6 ||h||2 ∗µ(X)1/2. This is simply the Cauchy-Schwarz
inequality applied to |h| and 1. Since we’re working in a space of finite mea-
sure, this means that ||h||1 6 c||h||2 where c is a constant. Hence, L2 functions
are L1. We’ll show the restriction of D to L2 is dense in L2.

Let P = {gT − g|g ∈ L∞}. P denotes the closure of P in L2. By a similar
argument to showing that gT − g is in L1, P is in L2.

Let I = { f | f ∈ L2, f invariant}.
We’ll show that L2 = P ⊕ I . I.e. every function in L2 is uniquely a sum

of an invariant function and a function that is arbitrarily close to a cobound-
ary. It suffices to compute the set of L2 functions that are orthogonal to ev-
ery element of P and then since the inner product is continuous (since L2

is a Hilbert space) this set is orthogonal to every element of P . If f is in-
variant, ( f , gT − g) = ( f , gT) − ( f , g). But, ( f , gT) =

∫
X f (x)gT(x)dµ =∫

X f T−1(x)g(x)dµ = ( f T−1, g) = ( f , g). Hence, ( f , gT − g) = 0. Hence
I lies in the space of orthogonal function to P . To show the converse, sup-
pose f is orthogonal to every element of P . Then, ( f , gT − g) = 0. Thus,
( f , gT) = ( f , g). By a similar arguement to before, ( f , gT) = ( f T−1, g). We’re
left with the conclusion, ( f , g) = ( f T−1, g) and ( f − f T−1, g) = 0. Let g be
the characteristic function of the set where f (x) − f T−1(x) > 0. This set is
measurable since we presume f is and this g is bounded by 1. Plugging in,
0 = ( f − f T−1, g) =

∫
{ f− f T−1>0} ( f (x)− f T−1(x))dµ. But this is then the in-

tegral of a positive quantitiy, and thus the integral is non-negative. But the
integral is 0, hence the integrand is positive over a set of measure zero. Simi-
larly, for the reverse inequality, the integrand is negative over a set of measure
zero. Combined, f (x) = f T−1(x) except on a set of measure zero. Hence f is
invariant.

Thus the orthogonal space to P is precisely the invariant functions. Thus
we see our direct sum decomposition of L2 as P ⊕ I .

Hence the set { f + gT − g| f ∈ L2, f T = f , g ∈ L∞} is dense in L2.
Since D ∩ L2 is dense in L2, and since simple functions are dense in both

L1 and L2 (in the corresponding metrics), to show D is dense in L1 we fix an
arbitrary f ∈ L1 and an arbitrary ε > 0.. Then we can find a simple function
s ∈ L1 such that || f − s||1 < ε. But all simple functions in L1 are bounded L∞
and hence in L2. Since s ∈ L2, we can find an h ∈ D such that ||s − h||2 < ε. But
by our above use of Cauchy-Schwarz, h ∈ L1 and ||s − h||1 6 c||s − h||2 < cε.
Combing these, || f − h||1 6 || f − s||1 + ||s− h||1 < (1+ c)ε. Since ε was arbitrary,
we establish the desired estimate.

Hence, every L1 function is arbitrarily close to the sum of an invariant func-
tion and a coboundary.

Let’s pause for a moment to interpret this result in a kinda rough manner:
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every measurement on a dynamical system (an L1 function) is arbitrarily close
to a measurement that’s constant along trajectories and a measurement that
resembles a bounded perturbation or error from the function being invariant
that goes to zero in the average.

Now we need to show that the subset of L1 where AN converges is closed
(since we showed that AN converges over a dense set of L1, if we know con-
vergence holds over a closed set, then we’re done).

Suppose fn → f in L1 and for each fn, AN( fn) converges. Since for each
n, AN( f ) converges, we can choose N sufficiently large to make ||AN( fn) −
AM( fn)||1 < ε

We note that AN is linear. We have the result (presented here without proof,
that µ({supN |AN(g)| > α}) 6 1

α ||g||1. This is the maximal ergodic theorem in a
weaker form.

We want to find the measure of the set
E = {lim supN→∞,M→∞ |AN( f )(x) − AM( f )(x)| > 0}. If µ(E) = 0 then for
almost every x, AN( f )(x) is a Cauchy sequence of real numbers and hence
AN( f )(x) is convergent and the average is defined. Let Eα = {lim supN→∞,M→∞ |AN( f )(x)−
AM( f )(x)| > α}

|AN( f ) − AM( f )| 6 |AN( f ) − AN( fn)| + |AN( fn) − AM( fn)| + |AM( fn) −
AM( f )|.

Since we assume that on fn the average exists, the middle term tends to 0
as N, M approach ∞.

Hence Eα ⊂ {lim supN→∞,M→∞ |AN( f ) − AN( fn)|+ |AM( fn) − AM( f )| >
α}. For this inequality to hold, one of the summands must be greater than
α
2 . Hence Eα ⊂ {lim supN→∞ |AN( f ) − AN( fn)| >

α
2 }. We can then use the

maximal ergodic theorem to estimate the size of this set.

µ(Eα) 6 µ({sup
N

|AN( f − fn)| >
α

2
}) 6

2
α
|| f − fn||1

But fn → f in L1. Hence we can give µ(Eα) an arbitrarily small upper
bound. Hence µ(Eα) = 0 for every α.

Since E1/n ↗ E, µ(E) = 0. Hence the average exists for f almost every-
where. This shows that the set of L1 functions with well defined averages is
closed. Since this set contains a set that is dense in L1, this set is necessarily all
of L1.

Thus we’ve established the result that the average of any L1 function exists
at almost every point of space.

7 Towards the Pointwise Ergodic Theorem

So now we know that A( f )(x) is well defined at almost every x ∈ X. We want
to connect this average, which is essentially a time average, to an average over
the space X. First we note, AN( f )(Tx) = 1

N ( f (x)) + N+1
N AN+1( f )(x).
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If x is such a point that the average of at x and Tx exists (which is all X ex-
cept the union of two measure zero sets), A( f )(Tx) = A( f )(x) limN→∞ N+1

N +

limN→∞ f (x)
N = A( f )(x). Hence A( f ) is an invariant function except on a set

of measure zero. This has the interpretation that averaging along trajectories
essentially does not depend on the initial measurement(s).

We can further show that A( f ) is in L1 by noting that AN( f ) 6 AN(| f |),
hence A( f ) 6 A(| f |) and

||A( f )||1 6 ||A(| f |)||1 =

∫
X

lim
1
N

N−1∑
n=0

| f |Tn(x)dµ(x)

= lim
1
N

N−1∑
n=0

∫
X
| f |Tn(x)dµ(x)

= lim
1
N

N−1∑
n=0

∫
X
| f |(x)dµ(x)

= lim
1
N

N−1∑
n=0

|| f ||1

= || f ||1

where the second equality follows by noting that since the limit converges al-
most everywhere and is non-negative, we can apply Fatou’s Lemma noting
that almost everywhere convergence implies the limit is the limit infimum. The
third equality follows by changing variables.

Hence A( f ) is defined almost everywhere and L1 and constant along tra-
jectories. That’s about as much as we can say at the moment.

Now, we can impose the further restriction on our dynamical system that
all invariant functions must be constant almost everywhere. This restriction
makes the system ergodic (this is taken as a definition). An interpretation for
this condition that is one could theoretically use invariant functions to separate
orbits, but an ergodic dynamical system essentially cannot do that since every
orbit ”explores the whole space”.

Hence if our system is ergodic, since A( f ) is invariant, A( f ) must be con-
stant.

If we pass to the Lebesgue decomposition of f , f = f+ − f−, noting that
AN( f ) = AN( f+) − AN( f−), so A( f ) = A( f+) − A( f−) almost everywhere.
Working with just A( f+), by a similar calculation to showing A( f ) was L1,
we see

∫
X A( f+)(x)dµ(x) = || f+||1 =

∫
X f+dµ and similarly for A( f−). By

linearity,
∫

X A( f )dµ = || f+||1 − || f−||1 =
∫

X ( f+ − f−)dµ =
∫

X f dµ. But A( f )
is constant here, so

∫
X A( f )dµ = f

∫
X dµ = f where f denotes the almost

everywhere constant value of A( f ) and we take µ to be a probability measure
so µ(X) =

∫
X dµ = 1.

So we see, f =
∫

X f (x)dµ(x).
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Hence we see

lim
N→∞ 1

N

N−1∑
n=0

f Tn(x) =
∫

X
f dµ

for almost every x ∈ X. This is the pointwise ergodic theorem and it states
that the time average over an orbit converge almost everywhere to the average
over the entire space. In fact, that this theorem holds for a dynamical system is
equivalent to the system being ergodic (to see this consider an invariant func-
tion f , then the ergodic theorem says that f (x) is constant for almost every x
(and in fact equals the space average), thus reproducing our original defini-
tion).

8 Closing Summary

We see a powerful structural theorem here, that the average operator is in fact
well defined over almost every point and that if the system is ergodic, the aver-
age over a trajectory (”in time”) in fact equals the space average, justifying the
interpretation of an ergodic dynamical system as a system where almost every
trajectory explores all of the configuration space.


